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for a microstrip resonator situated on an Isotropic substrate are used X kcrostdp resolalo
to validate the theory. 1. I

I. INTRODUCTION ( 4.)
Microstrip and disk resonators are among key important cle-

ments in the design of microwave and millimeter-wave frequency Anisotm* Layeri.-- (D lel.o h,
sources and filtering networks [Il. The analysis of such structures W

has been extensively investigated by numerous authors. Different b y

methods based on various approximations [21 to the quasi-static (a)
approach 13]-[41 have been used to study these resonators. Since
these analyses are based on approximations, which are inaccurate
for high frequency applications, quite often a correction factor is W

needed in order to compensate for the dispersion effects. More ac- flm astip resOor
curate theories have been developed and implemented to study the _F
characteristics of the microstrip resonators, as documented in (51- D

161. Up until now, the emphasis of the resonator studies have been
directed towards structures printed on isotropic materials, that is,
the substrate being characterized by a zero-rank permittivity ten-
sor. Z

In this paper, a full-wave analysis via the spectral domain ap- (b)
proach is used to study the characteristics of shielded microstrip Fig. 1. Geometry of the shielded microstrip resonator. (a) End view. (b)
resonators printed on anisotropic substrates. The material is char- Top view.

acterized by a second rank permittivity tensor in which all diagonal
elements can be distinct. The Green's function of the structure is
derived by applying the resonance conditions and by solving the The Fourier transform of any quantity is defined through the fol-
fourth-order differential equations in the Fourier domain. A pro- lowing relation:
cedure based on Galerkin's method is then used to form the. char-

acteristic equation from which the resonant frequency of the reson- g- b12

ator is numerically obtained. Data for a resonator printed on an 4 (x, a, U6) = J__ f * (x, y, z)e 'ejO dy dz (3)

isotropic substrate, which is treated as a special case of anisotropic,

are computed and then compared to existing-data, and good agree- with a and f being the Fourier transform variables. When (2a) and

ment is observed. The resonant frequencies of the microstrip re- (2b) are transformed according to (3) and reduced, a set of coupled

sonators on anisotropic materials, such as PTFE cloth, boron ni- differential equations written in terms of the tangential electric fields

tride, epsilam-10, and sapphire are then computed. can be derived:

d 2 By
Rdx'-' + Y2 R, + y4 •r = 0 (4a)

II. THEORY

The microstrip resonator structure under consideration is shown dg + z2 A + £ , R, = 0 (4b)
in Fig. I along with the coordinate system used. A rectangular strip dx 2

of width w and length d is printed on one side of the anisotropic with Y2, Y4, z2 and z4 are the transformed coefficients. In order to
layer situated inside a shielded housing. For simplicity of the anal- find the solution for £, or 9z, (4a) and (4b) are then decoupled
ysis, it is assumed that the operating frequency is below the cut- yielding a fourth order differential equation for either field. Once
off frequency of the partially loaded waveguide. The substrate, the tangential field solutions are found, the remaining components
which extends from -b/2 to +b/2, is also assumed to be lossless in the anisotropic region are then derived and they are expressed
with thickness h,. The distance from the microstrip resonator to the in their generalized forms as
top cover is h 2 . In general, the anisotropic medium is characterized

by its permittivity tensor: EP = A: sin (,y.x) + B* sin (,y-x) (5a)

£~ = E;A* sin (yfx) + EB: sin (,y x) (5b)[e oJOe 0 yn ., yJ] () • jO,)'""o

= 0 1 0 and Il p11H A: cos (,y,.x) + (jwu,,) B.* cos ('y x)

10 0 , I (5c)

where e. and pit are the free-space values. [I, = (Jwjw)-H A* cos ('V, x) + (jwp,,) 'Il, R* cos (-yx)

The vector wave equations for the components of the electric and (5d)
magnetic fields within the anisotropic layer, which can be manip-
ulated from Maxwell's equations, are expressed in their simplified with
forms as E (y ) (6a)

IVX(VXE) - kalel - E- o (2a)

VXX(IIl VX1) -k'1l 0 (2b) : ,(6h)
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H', - j.E, (6c) and then, substituting.?, and .J, into the impedance Green's function
(9a), and after taking the inner products with .1, and 1j for different

H -'yt E + joEI (6d) indexes i, a set of algebraic equations is derived:

where y. can be obtained by solving the fourth order characteristic U N
equation through the method described in [7]. X Ti.(I, I)C. + 7 7;,,(l, 2)D., = 0 i = 1. 2, 3, N

The fields within the isotropic region 2 can be derived based on

the superposition of TE and TM fields. The transforms of the scalar u N
potentials, which are used to find the field components, are written T,.1(2, )C. + T 7J(2, 2 )DD. = 0 i = 1,2,3,. M
below:

d2 €•..j(I Ia)
dx2  + (0-2)2 ' - 0. (7) with

After applying the boundary conditions at the top cover x h, Tj,,(I, I)(ko) = J,- ,(a. a, O)J,.(c, 0) dO (Ib)
+ h2, the field expressions for region 2 are, 0

F. 2 = {c ,A .- c2B ,) sin 12(h , + h 2  - x ) (8a) 2 k-

Pa = CB sin 7 2(h, + h2 ) (8b) T,.(I 62)(k1o) =6, J ] ,$)c.. ,(ko, a,)J(.,. 8(a.)d (lic)
0

17, 2 = (c4 A .+ csB.) cos "T2(h, + h2  - x) (8c) -

l = c6A, cos 72(h1 + h - x) (8d) Ti,(2. l)(k.) = I Jt.(a, )0,(k.,. , O)J.,(a, f) d8 (Ild)

with cl to c6 are the known constants. 0

At the air-anisotropic layer interface x = hi, the appropriate
boundary conditions are also imposed so that a set of matrix equa- T.(2 2) (k.) - , 8)(0(k., a, 9)J],,(c, P) dO. (le)
tions can be formed yielding the expression for the impedance "" J
Green's function:

The right hand sides of (I la) have been eliminated in the Galerkin
I Ojk., c, j3) 0,(k.. af. 0)1 JL(a, 0) E(af, 0) process through the application of Parseval's theorem. The simul-
Or4(ka, .) O(ko, a, 0) ]J(a, 0) = 4(c, 0) (9a) taneous equations are then solved for the wave number k. by setting(ko. c),( ) If,(,. #)I .)the determinant of the coefficient matrix equal to zero and search

with the matrix elements defined as for the root of the resulting equation.
For the dominant mode, 1,, and J4, are chosen to have the fol-

C= H= Hdot, •O = -H 2 /det lowing forms:

O. = -H,/det, •CY, H4/det J,1(a, 0) = J1(&)02(0) (12a)

det = !, H4 - H2H) (9b) Jt,(a, ) = ]3(0)14(0) (12b)

where where the inverse transforms of J], J2, J, and 14 are given by

HJ, = tiK' + {-f 4 K* + E)K-}/I,, (9c) J, = sin ((2ry/w)/[I.0 - (2y/w)21'/ 2  (12c)

112 = E7 K' + { 2 K* - EK-)/ 1 ,o (9d) J2 = 2z/d2 (12d)

//I =-Z7K 2 + ({ 4•tK* - 64- 6K- )/, (9e) J. = 1.0 - (2y/w)2-'1 (120)

11, = tK 2 + {-t 2 ,K÷ + tZ 6 K-'}/t,0  (9f) J4 = (2/d) cos (rz1d). (12f)

K2 = cot (y 2hO). (9g) Note that the form of J, and J3 is identical to the one used for
computing the dispersive characteristics of infinitely long micro-

K Cot (-, h 1), (9h) strip lines.

K = cot (yhA1). (9i)
IIl. RESULTS

The remaining constants in (9c)-(9i), El to Z,, can be written in To validate the theory, the resonant frequency of a shielded mi-
terms of the transformed variables as well as the medium parame- crostnp resonator printed on an isotropic substrate, which is treated
ters. as a special case of anisotropy, is computed and compared to pub-

To find the resonant frequency of the microstrip resonator, a pro- lished data. The dimensions of the structure are b = 155.0 mm, h,
cedure based on the Galerkin technique [61 is used, by first cx- 127 mm, h2 88.9 mm, and w - 20.0 mm, The substrate is
panding the unknown currents J, and J, in terms of known basisf.!nctions characterized hy its permittivity tensor as •,, i ,., = •: :2 (iS

Fi:g 2 shows the response of the resonant frequency of the reso
U nator with respect to different physical lengths. As can he seen, the

J,(,. 0) = X C. J,..(a, 0) (1O0) resonator may resonate anywhere between 0.5 0Hz 1to 0.8 GCLh
rai•ge. depending on the chosen dimensions. Plotted also with out

J 11, 0) - , D,1J.1(), ) (10h) data are the results reproduced from reference [61, and an excellent
-Iilpw t' is ohservcd.
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250 implies that the resonant frequencies of the resonators for these two

THIS METHOC media are just about the same.
0 0 0 0 ITOH (6) IV. CONCLUSION

An analysis based on the spectral domain method applied to study
shielded microstrip resonators printed on anisotropic materials was
presented. The anisotropic layer is generally specified by its second

150. rank permittivity tensor. The Green's function for the structure is
Q obtained through a fourth order D. E. formulation, Galerkin's

method testing procedure in the Fourier domain is applied to form
100- the characteristic equation from which the resonant frequency of

the resonator is numerically obtained. Data on the resonant fre-
quency of resonators printed on both uniaxial and biaxial substrates
were also generated.
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